D7net Mini Sh3LL v1

 
OFF  |  cURL : OFF  |  WGET : ON  |  Perl : ON  |  Python : OFF
Directory (0755) :  /var/www/html/../html/cvprlab/research/page/../structured/

 Home   ☍ Command   ☍ Upload File   ☍Info Server   ☍ Buat File   ☍ Mass deface   ☍ Jumping   ☍ Config   ☍ Symlink   ☍ About 

Current File : /var/www/html/../html/cvprlab/research/page/../structured/index.html
<!DOCTYPE html>
<html lang="en-us">

<head>

  <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="generator" content="Source Themes Academic 4.6.0">

  

  
  
  
  
  
  

  

  
  
  
    
  
  <meta name="description" content="Structured Pattern Recognition            In machine learning, very powerful and efficient methods have been proposed when data are represented by flat and fixed-width real vectors, even when heavily corrupted by noise. Neural networks, support vector machines and statistical methods are well known and widely used techniques. All of them share many successful stories in real-life problems, a well established theoretical background, and many journals and conferences devoted to explore possible refinements and applications.">

  
  <link rel="alternate" hreflang="en-us" href="/research/structured/">

  


  
  
  
  <meta name="theme-color" content="#2962ff">
  

  
  
  
  
    
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/academicons/1.8.6/css/academicons.min.css" integrity="sha256-uFVgMKfistnJAfoCUQigIl+JfUaP47GrRKjf6CTPVmw=" crossorigin="anonymous">
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/all.min.css" integrity="sha256-+N4/V/SbAFiW1MPBCXnfnP9QSN3+Keu+NlB+0ev/YKQ=" crossorigin="anonymous">
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/fancybox/3.5.7/jquery.fancybox.min.css" integrity="sha256-Vzbj7sDDS/woiFS3uNKo8eIuni59rjyNGtXfstRzStA=" crossorigin="anonymous">

    
    
    
      
    
    
      
      
        
          <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/styles/github.min.css" crossorigin="anonymous" title="hl-light">
          <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/styles/dracula.min.css" crossorigin="anonymous" title="hl-dark" disabled>
        
      
    

    

    

  

  
  
  
  <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Montserrat:400,700%7CRoboto:400,400italic,700%7CRoboto+Mono&display=swap">
  

  
  
  
  
  <link rel="stylesheet" href="/css/academic.css">

  




  


  

  <link rel="manifest" href="/index.webmanifest">
  <link rel="icon" type="image/png" href="/img/icon-32.png">
  <link rel="apple-touch-icon" type="image/png" href="/img/icon-192.png">

  <link rel="canonical" href="/research/structured/">

  
  
  
  
    
    
  
  
  <meta property="twitter:card" content="summary">
  
  <meta property="og:site_name" content="CVPR Lab">
  <meta property="og:url" content="/research/structured/">
  <meta property="og:title" content="Structured Pattern Recognition | CVPR Lab">
  <meta property="og:description" content="Structured Pattern Recognition            In machine learning, very powerful and efficient methods have been proposed when data are represented by flat and fixed-width real vectors, even when heavily corrupted by noise. Neural networks, support vector machines and statistical methods are well known and widely used techniques. All of them share many successful stories in real-life problems, a well established theoretical background, and many journals and conferences devoted to explore possible refinements and applications."><meta property="og:image" content="/img/logo.png">
  <meta property="twitter:image" content="/img/logo.png"><meta property="og:locale" content="en-us">
  
    
      <meta property="article:published_time" content="2018-11-14T19:02:50-07:00">
    
    <meta property="article:modified_time" content="2018-11-14T19:02:50-07:00">
  

  



  


  


  





	<title>Structured Pattern Recognition</title>
</head>

<body id="top" data-spy="scroll" data-offset="70" data-target="#TableOfContents" >

  <aside class="search-results" id="search">
  <div class="container">
    <section class="search-header">

      <div class="row no-gutters justify-content-between mb-3">
        <div class="col-6">
          <h1>Search</h1>
        </div>
        <div class="col-6 col-search-close">
          <a class="js-search" href="#"><i class="fas fa-times-circle text-muted" aria-hidden="true"></i></a>
        </div>
      </div>

      <div id="search-box">
        
        <input name="q" id="search-query" placeholder="Search..." autocapitalize="off"
        autocomplete="off" autocorrect="off" spellcheck="false" type="search">
        
      </div>

    </section>
    <section class="section-search-results">

      <div id="search-hits">
        
      </div>

    </section>
  </div>
</aside>


  
<nav class="navbar navbar-expand-lg navbar-light compensate-for-scrollbar" id="navbar-main">
  <div class="container">

    
    
    
      <a class="navbar-brand" href="/"><img src="/img/logo.png" alt="CVPR Lab"></a>
    

    
    <button type="button" class="navbar-toggler" data-toggle="collapse"
            data-target="#navbar-content" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
    <span><i class="fas fa-bars"></i></span>
    </button>
    

    
    
    <div class="navbar-collapse main-menu-item collapse justify-content-start" id="navbar-content">

      
      <ul class="navbar-nav d-md-inline-flex">
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#demo"><span>Home</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#research"><span>Research</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#staff"><span>Staff</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#publications"><span>Publications</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#projects"><span>Projects</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#eve-ann"><span>Events & Announcements</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#code"><span>Code</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#links"><span>Links</span></a>
        </li>

        
        

        

        
        
        
          
        

        
        
        
        
        
        
          
          
          
            
          
          
        

        <li class="nav-item">
          <a class="nav-link " href="/#contact"><span>Contact</span></a>
        </li>

        
        

      

        
      </ul>
    </div>

    <ul class="nav-icons navbar-nav flex-row ml-auto d-flex pl-md-2">
      
      <li class="nav-item">
        <a class="nav-link js-search" href="#"><i class="fas fa-search" aria-hidden="true"></i></a>
      </li>
      

      
      <li class="nav-item">
        <a class="nav-link js-dark-toggle" href="#"><i class="fas fa-moon" aria-hidden="true"></i></a>
      </li>
      

      

    </ul>

  </div>
</nav>


  <article class="article">

  












  

  
  
  
<div class="article-container pt-3">
  <h1>Structured Pattern Recognition</h1>

  

  
    


<div class="article-metadata">

  
  

  
  <span class="article-date">
    
    
      
    
    
  </span>
  

  

  

  
  
  

  
  

</div>

    














  
</div>



  <div class="article-container">

    <div class="article-style">
      <h2 id="structured-pattern-recognition"><strong>Structured Pattern Recognition</strong></h2>
<hr>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="/img/structured.png" alt="spr-image"></td>
<td><!-- raw HTML omitted -->In machine learning, very powerful and efficient methods have been proposed when data are represented by flat and fixed-width real vectors, even when heavily corrupted by noise. Neural networks, support vector machines and statistical methods are well known and widely used techniques. All of them share many successful stories in real-life problems, a well established theoretical background, and many journals and conferences devoted to explore possible refinements and applications. Unfortunately, in many relevant applications, data are not naturally expressed in terms of flat vectors. More expressive data structures, as trees or graphs, often nicely capture essential properties of the problem at hand, simplifying its mathematical representation and paving the way for its solution. Also, the features characterizing the input vectors are quantitative, i.e. numerical in nature, but features having imprecise or incomplete specification are usually either ignored or discarded from the design and test sets. The concept of Zadeh's fuzzy set theory can be introduced into the machine learning process to cope with impreciseness arising from various sources. For example, it may become convenient to use linguistic variables and hedges (small, medium, high, very, more and less, etc.) in order to describe the feature information. Again, uncertainty in classification may arise from the overlapping nature of classes; realistically speaking, the feature vector characterizing a specific pattern can and should be allowed to have degrees of membership in more than one class. The research activity concerns the design of neuro-fuzzy and kernels models for processing structured data. The studies relating the insertion of fuzzy rule-based domain knowledge and hence the fuzzy automaton state  transitions into neural or kernel models should provide two benefits: (i) improving generalization to new instances and  (ii) simplifying learning. The applications include 2D e 3D object recognition.\</td>
</tr>
<tr>
<td>\</td>
<td></td>
</tr>
</tbody>
</table>
<!-- raw HTML omitted -->

    </div>

    


















  
  
  














  
  



  </div>
</article>

      

    
    

    
    
    
      <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
      <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.imagesloaded/4.1.4/imagesloaded.pkgd.min.js" integrity="sha256-lqvxZrPLtfffUl2G/e7szqSvPBILGbwmsGE1MKlOi0Q=" crossorigin="anonymous"></script>
      <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.isotope/3.0.6/isotope.pkgd.min.js" integrity="sha256-CBrpuqrMhXwcLLUd5tvQ4euBHCdh7wGlDfNz8vbu/iI=" crossorigin="anonymous"></script>
      <script src="https://cdnjs.cloudflare.com/ajax/libs/fancybox/3.5.7/jquery.fancybox.min.js" integrity="sha256-yt2kYMy0w8AbtF89WXb2P1rfjcP/HTHLT7097U8Y5b8=" crossorigin="anonymous"></script>

      

      
        
        <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/highlight.min.js" integrity="sha256-1zu+3BnLYV9LdiY85uXMzii3bdrkelyp37e0ZyTAQh0=" crossorigin="anonymous"></script>
        
        <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/languages/r.min.js"></script>
        
      

      
      
    

    
    

    
    
    <script>hljs.initHighlightingOnLoad();</script>
    

    
    
    
    
    
    
    <script>
      const search_config = {"indexURI":"/index.json","minLength":1,"threshold":0.3};
      const i18n = {"no_results":"No results found","placeholder":"Search...","results":"results found"};
      const content_type = {
        'post': "Posts",
        'project': "Projects",
        'publication' : "Publications",
        'talk' : "Talks"
        };
    </script>
    

    
    

    
    
    <script id="search-hit-fuse-template" type="text/x-template">
      <div class="search-hit" id="summary-{{key}}">
      <div class="search-hit-content">
        <div class="search-hit-name">
          <a href="{{relpermalink}}">{{title}}</a>
          <div class="article-metadata search-hit-type">{{type}}</div>
          <p class="search-hit-description">{{snippet}}</p>
        </div>
      </div>
      </div>
    </script>
    

    
    
    <script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.1/fuse.min.js" integrity="sha256-VzgmKYmhsGNNN4Ph1kMW+BjoYJM2jV5i4IlFoeZA9XI=" crossorigin="anonymous"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js" integrity="sha256-4HLtjeVgH0eIB3aZ9mLYF6E8oU5chNdjU6p6rrXpl9U=" crossorigin="anonymous"></script>
    

    
    

    
    

    
    
    
    
    
    
    
    
    
      
    
    
    
    
    <script src="/js/academic.min.96cf4c3dc37ea60dbbd03c13a455f1f7.js"></script>

    






  
  
  <div class="container">
    <footer class="site-footer">
  

  <p class="powered-by">
    

    Powered by the
    <a href="https://sourcethemes.com/academic/" target="_blank" rel="noopener">Academic theme</a> for
    <a href="https://gohugo.io" target="_blank" rel="noopener">Hugo</a>.

    
    <span class="float-right" aria-hidden="true">
      <a href="#" class="back-to-top">
        <span class="button_icon">
          <i class="fas fa-chevron-up fa-2x"></i>
        </span>
      </a>
    </span>
    
  </p>
</footer>

  </div>
  

  
<div id="modal" class="modal fade" role="dialog">
  <div class="modal-dialog">
    <div class="modal-content">
      <div class="modal-header">
        <h5 class="modal-title">Cite</h5>
        <button type="button" class="close" data-dismiss="modal" aria-label="Close">
          <span aria-hidden="true">&times;</span>
        </button>
      </div>
      <div class="modal-body">
        <pre><code class="tex hljs"></code></pre>
      </div>
      <div class="modal-footer">
        <a class="btn btn-outline-primary my-1 js-copy-cite" href="#" target="_blank">
          <i class="fas fa-copy"></i> Copy
        </a>
        <a class="btn btn-outline-primary my-1 js-download-cite" href="#" target="_blank">
          <i class="fas fa-download"></i> Download
        </a>
        <div id="modal-error"></div>
      </div>
    </div>
  </div>
</div>

</body>
</html>

AnonSec - 2021 | Recode By D7net